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A&met-Timedependent concentration patterns have been calculated as well as Sherwood numbers for 
two-phase processes employing bubbles and droplets. Results are reported for the cases of shrinking and 
growing particles, and for particles of constant volume. The influences of solubility, resistance to mass 

transfer, and first-order homogeneous reaction are taken into consideration. 

1. INTRODUCTION 

UNSIEADY-STATE mass exchange between disperse 
spherical particles like droplets, bubbles, and solid 
particles and their su~oundings may be observed in 
many processes that take place in nature [il. Also 
many processes of technical importance are based 
upon such mass exchange, often combined with a 
chemical reaction. 

Mass transfer across the interface of particles is a 
timedependent process due to the small volume of 
the particles. The size of particles can be considered 
to be constant as a first approach as long as the 
amount of mass transferred is small in comparison 
with the volume of the particle [2]. This simplification 
is not permissible when considering processes in which 
relatively large amounts of mass are exchanged 
between the disperse phase and the continuous phase. 
The radial motion of the particle interface-depend- 
ing on the direction of mass tra~fer-homes the 
predominating influence on the process. 

Examples of practical importance are the dis- 
solution of air bubbles in biosuspension during bio- 
logical waste water treatment, the evaporation of fuel 
droplets in the reaction chamber of internal com- 
bustion engines, the dissolution of residual mono- 
meric bubbles in plastic melts, and the growth of 
cavities during the production of polymeric foams. 

Most of the previous work on this topic considered 
the change of volume for particles of pure substances 
or dealt with the change of concentration in particles 
of constant volume. In this paper the change in con- 
centration inside and around a particle will be inves- 
tigated while its volume changes due to mass transfer. 
The inv~t~gation is mrrled out by means of theor- 
etical-numerical methods. A single particle is con- 
sidered the volume of which changes with time accord- 
ing to the intensity of mass transfer. The particle is 
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i~~in~ntinuo~su~undin~ofi~te~e~ion; 
the surroundings are assumed to be quiescent. 
Brauer [2] proved there is only little influence of 
fluid motion on unsteady-state mass transfer. 

Three cases are distin~sh~ concerning the resist- 
ance to mass transfer. In the general case, resistance 
occurs in both phases; the limiting case of primary 
resistance inside the particle describes a system drop- 
let/gas while the limiting case of primary resistance 
in the su~o~ding phase corresponds to the system 
bubble/liquid. Mass transfer is either directed into the 
particle or out of it. The distance of the particle to 
other particles as well as to system boundaries like 
vessel walls, and to regions where fluid motion occurs 
should be large enough that inte~ctions between 
them are excluded. 

The particle and its surroundings are treated each 
as a binary system. Only one of the compounds of the 
system, i.e. substance A, is assumed to be capable 
of being transferred across the interface. All other 
compounds are assumed to be inert concerning mass 
transfer and chemical reaction and therefore treated 
as one homogeneous substance B. 

2. MATWEMATICAL DESCRIPTION OF MASS 
TRANSPORT 

2.1. Deferential equation for the concentrationfield 
Using symbols as shown in Fig. 1, one obtains a 

differential equation for the description of the con- 
centration pattern inside the particle as follows : 

(1) 

and for the concentration pattern in the surrounding 
phase 
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NOMENCLATURE 

D,, D2 diffusivity [m’ s- ‘1 cl, j2 reduced concentration, equations (6) and 

k, volumetric reaction rate constant [s- ‘1 (7) 
*A mass flux density [kg m- * s- ‘1 PQ reduced initial concentration, equation 
r radial local coordinate [m] (18) 
R particle radius [m] * 

Pa reduced final concentration, equation 
t time [s] (19) 

L 

particle volume [m’] CD enhancement factor, equation (23) 
mass transfer coefficient [m s- ‘1 Al’*, volume change number, equation 

pAI, pA2 partial mass density (20). 
(concentration) of A [kg m- ‘1 

I 
PA mass density of A [kg m- ‘1. Subscripts 

A substance A 

P at the interface 
Dimensionless quantities ph physical transport 

D* diffusivity number, equation (13) t instantaneous ; at time t 
Da, volumetric Damkohler number, volumetric 

equation (14) ; at time 0 ; initial value 
Fo,, , fhnz Fourier number, equations (8) 1 in phase 1 (particle) 

and (9) 2 in phase 2 (surroundings) 
H* Henry number, equation (11) CL, at time ~0 ; final value. 
r* reduced radial coordinate, equation (10) 
R* reduced particle radius, equation (12) Superscript 
S/I,,, S/r,, Shz Sherwood number _ 

mean value. 

A dimensionless formulation of equations (1) and 
(2) will be used in order to reduce the number of 
parameters that determine the problem considered 

Fom2 3 tl(R;lD,) ; 

dimensionless radial coordinate 

(9) 

85, 
dF%, 

(3) 
r* m r/R, ; 

Henry number 

(10) 

at2 dR* R** a<, __ --- 
aFo,* + dFo,,,* r*’ dr* 

1 d 
=r*2ar* -Da, L (4) 

H* s P~lp/P~2p ; 

dimensionless particle radius 

R* 3 R/Ro; 

(11) 

(12) 

To apply equations (3) and (4) simultaneously, equa- diffusivity number 

tion (3) will be transformed by introducing the Fou- D* 3 D,lD,; (13) 
tier number Fo,,,~. This leads to 

volumetric Damkiihler number 
1 xl 1 a --= -- 

D* dFo,, r** dr* (5) Da, = k,RilD,. (14) 

Equations (3)-(S) contain the following dimension- 
less parameters : 

dimensionless concentration inside the particle 

r ~ PAI -H*P,2m 
I 

PAW -H*PAz~ ; 
(6) 

dimensionless concentration outside the particle 

52 = 
PA2 - PA2rc 

PAW/H* -PAZ= ’ 
(7) 

Fourier numbers 

Fox,,, = tl(R:lD,) (8) 

Depending on the location of the primary resistance 
to mass transport, the following equations are to be 
applied : 

(a) equations (4) and (5) if the resistance occurs in 
both phases ; 

(b) equation (3) for resistance prevailing in the 
particle ; 

(c) equation (4) for resistance prevailing in the sur- 
rounding phase. 

2.2. Differential equation for the particle radius 
As a result of mass balances one obtains for the 

instantaneous particle radius 
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crrowing particle 

FIG. 1. Schematic plot for explanation of concentration profiles and symbols. 

and in dimensionless form 

The time derivation of equation (16) leads to a differ- 
ential equation that describes the velocity of the 
moving interface 

dR+ 
- = f@Q-pZ)(l -p$)“3 
d&n1 

x[(l-P’,)-B@:-P’,)l-~/3~. (17) 

In addition to the dimensionless groups previously 
mentioned, the following quantities are introduced : 

dimensionless initial concentration 

P: = PNOIP; ; 08) 

dimensionless final concentration 

P: = H+P,,,/P;. (19) 

For the description of the volume change it is useful 
to introduce the volume change number 

A?‘: E (V, - VdVll = @j, -mu -&). (20) 

This parameter will not be applied to mathematically 
solve the problem but to simplify the discussion of 
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For resistance InsIde 
ths particle only 

For r~sistmce in the 
surroundlnq phase only 

Time direction, Fo, 

FIG. 2. Initial, boundary, and interfacial conditions. 

results. For a growing particle one obtains positive 
volume change numbers in the range 

O<AV~<oo (21) 

and for a shrinking particle negative values in the 
range 

-1 <AV$ ~0. (22) 

The volume change number AV: = 0 indicates the 
case of equimolar mass transfer without any change 
in the particle volume. 

2.3. Initial, boundary, and interfacial conditions 
The initial, boundary, and interfacial conditions are 

synoptically shown in Fig. 2. 

2.4. Numerical solution 
The differential equations for the concentration 

pattern, i.e. equations (3)-(9, together with the 
differential equation for the particle size, i.e. equation 
(17), build a coupled system of parabolic partial 
differential equations. The numerical solution of the 
equations has to take into consideration the so-called 
moving boundary problem [3] with steadily changing 
locations of the interfacial conditions. The solution 
was obtained by using a modified finite difference 
method [4, 51. 

3. PRESENTATION AND DISCUSSION OF 

RESULTS 

As a solution of the differential equations (3)-(S), 
and (17), and their initial and boundary conditions, 
concentration patterns as well as derived quantities 
for the description of mass transfer will be discussed. 
In particular, the influence of the following par- 

ameters is regarded : volume change number, Henry 
number, diffusivity number, and Damkiihier number. 

3.1. Influence of the volume change number 
3.1.1. General description. The volume change num- 

ber is defined by equation (20) using the concen- 
trations inside the particle at the beginning, pAI,,, 
and at the end of the mass transfer process, pAI_. This 
dimensionless group may be interpreted as the ratio 
of the maximum change in volume V, - VO, to the 
initial volume of the particle V,. Thus, a positive 
volume change number describes an absorption pro- 
cess where the particle volume increases. A negative 
volume change number occurs at evaporation pro- 
cesses where the particle volume decreases. The vol- 
ume change number AVZ = 0 represents the special 
case of equimolar mass transfer where the particle 
volume remains unchanged. This special case approxi- 
mately occurs by transferring only small amounts of 
mass with a negligible change in volume. 

The time-dependent change in partide size is con- 
nected with the motion of the interface in the radial 
direction. Therefore, the concentration layer in the 
vicinity of the interface will be infhrenced. During 
mass absorption (AVZ > 0), the particle volume 
increases with time so that there is a motion of the 
interface radially outward. The thickness of the 
concentration layer close to the particle interface is 
diminished, thus the concentration gradient becomes 
greater, leading to an enhancement of mass transfer 
compared with the equimolar case. On the other hand, 
the particle volume decreases during evaporation of 
mass (AV: < 0). The interface moves towards the 
centre point of the particle. The thickness of the sur- 
rounding concentration layer increases, and the con- 
centration gradient becomes smaller. In this case there 
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FIG. 3. Local concentration <, inside the particle plotted vs the radial coordinate r* for several Fourier 
numbers Fo,, : (a) equimolar transfer : volume change number A V, * = 0 ; (b) absorption : volume change 

number A V$, = 1; (c) evaporation : volume change number A Vz = -0.8. 

is less mass transfer than in the case of equimolar 
transport. 

The volume change number not only designates the 
direction of mass transfer but also the amount of mass 
transferred. For large volume change numbers there 
will be a large amount of mass transferred. Although 
the amount of mass transferred per unit time increases 
with larger volume change numbers, the mass transfer 
process will take a much longer time to reach the state 
of equilibrium. 

The influence of the volume change number will be 
explained in detail by means of selected diagrams. 

3.1.2. Concentration patterns. Figure 3 shows the 

development ofconcentration patterns within the par- 
ticle with time. In this series of figures, only the volume 
change number has been varied ; other parameters 
remained unchanged. All figures are valid for the 
lower limiting case of the diffusivity number, i.e. D * -P 0. 
Then the resistance to mass transfer is inside the 
particle. In the surroundings of the particle the con- 
centration is constant ; in dimensionless terms cZ = 0. 
It has to be considered, that the dimensionless con- 
centration {, always decreases with time according to 
its definition, equation (6), even if the non-normalized 
concentration pa, increases during an absorption 
process. 
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FIG. 4. Ratio of Sherwood numbers Sh,,/Sh,,,,, plotted vs the Fourier number Fo,, for several volume 
change numbers A Vz. 

3.1.3. Sherwoodnumber. A quantitativecomparison 
of mass transfer during absorption and evaporation 
with equimolar transport is shown in Fig. 4. The ratio 
of each instantaneous Sherwood number Sh,, to the 
Sherwood number Sh,r,cq for AV*, = 0 is plotted in 
this figure. Absorption always enhances mass trans- 
fer, evaporation always diminishes it. The more the 
volume change number differs from zero, the stronger 
the influence is. 

Figure S shows the course of the mean Sherwood 
number Sh, plotted vs the Fourier number Fo,, for 
several volume change numbers. The case of equi- 
molar transport, i.e. AVZ = 0, is used as reference. 
For small Fourier numbers, the Sherwood number is 
described by the limiting law. From Fo,, = lo-* the 
Sherwood number decreases more rapidly and runs 
into a second limiting curve [2]. This second limiting 
curve represents the state of equilibrium. The mean 
Sherwood number is, similar to the instantaneous one, 

larger for absorption, and smaller for evaporation 
compared with equimolar transport. 

3.2. Influence of the Henry number 
32.1. General description. The Henry number is 

defined according to equation (11) as the ratio of the 
partial densities, pAlp to pAZp, at both sides of the 
interface. These partial densities are equal to the satu- 
ration concentration of substance A in the state of 
equilibrium. Therefore, the Henry number describes 
the solubility of the substance transferred in the sys- 
tem considered. Large Henry numbers indicate low 
solubihty, while small values indicate high solubility 
of the substance in the phase. The solubility decisively 
determines the duration of the mass transfer process. 
In the case of high solubility for substance A, a large 
amount of mass can be transferred within a short 
time, while low solubility represents a resistance to 
mass transfer and so retards the transport. For small 

1o-3 lo-’ 10’ ld 10s 

Fourier number Fo., = tO,/Ri 

FIG. 5. Mean Sherwood number .Sh, plotted vs the Fourier number Fo,, for several volume change numbers 
AL’:. 
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FIG. 6. Local concentrations C, and t2 inside and around the particle plotted vs the radial coordinate r* 
for several Fourier numbers Fo,: (a) high solubility : Henry number H* = I ; (b) intermediate solubility: 

Henry number H* = 10; (c) poor solubility : Henry number H* = 10’. 

Henry numbers the concentration step at the interface 
becomes smaller, and so both the concentration 
difference and the concentration gradient at the inter- 
face become greater. This results in larger mass fluxes 
and a faster approach towards equilibrium. 

3.2.2. Concentration patterns. Figure 6 shows the 
change in the concentration patterns inside the par- 
ticle and in its surroundings with time. In this series 
of figures only the Henry number has been varied ; all 
other parameters remained constant. All figures are 
valid for very large diffusivity numbers, D* + CO. 
Thus, the resistance to mass transfer lies in the sur- 
rounding phase; in the particle itself the concentration 
is constant locally but changes with time. For Fig. 6 

the case of absorption with A VZ = 1 was chosen. The 
location of the interface is marked by a dotted line in 
all figures. 

3.2.3. Sherwoodnumber. The mean Sherwood num- 
ber is plotted vs the Fourier number by varying the 
Henry number in Fig. 7. First the volume change 
number AI’: = 0, marked by a dash-dotted line, 
should be noted. In the range of short times all the 
curves follow an analytically based limiting law [2]. 
Here the intensity of mass transfer depends only on 
time and the Henry number, because of nearly in- 
finitely large concentration gradients. For extremely 
large times all the lines run into an upper limiting 
curve. In this case, the Henry number has no influence 
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FIG. 7. Mean Sherwood number Sh2 plotted vs the Fourier 
number Fo,~ for several Henry numbers H*. 

any more, and the mean Sherwood number is pro- 
portional only to the Fourier number. The transition 
range between the limiting cases is characterized by a 
more or less marked period in which the Sherwood 
number is nearly independent of time. This is also due 
to insufficient absorption capability caused by poor 
solubility. In spite of relatively large concentration 
gradients, less mass can be transferred. For extremely 
high Henry numbers, i.e. H* + ‘;c, a state will 
be reached in which mass transfer is completely 
suppressed. 

3.2.4. Interaction of the influences of the Henry 
number and the colume change number. If resistance 
to mass transfer occurs in the continuous phase, both 
Henry number and volume change number jointly 
control transport processes. Then there are inter- 
actions between the parameters which will be dis- 
cussed shortly. 

The previous sections explained the fact that the 
volume change number becomes of importance for 
mass transfer only in the range of large times, while 
Henry number controls mass transfer in the range of 
small and intermediate times. Therefore, there are 
three distinct regions in the interaction of the two 
parameters. 

(1) For small times the concentration gradients at 
the interface are so large that an increase is impossible 
by any means. Mass transfer then is determined 
by solubility. In this range the Henry number 
predominates. 

(2) For intermediate times, concentration gradi- 
ents of finite amount generally exist. They can be 
enhanced by an increase in the particle volume. In this 
range an interaction between the Henry number and 
the volume change number occurs. 

(3) For large times mass transfer gradually comes 
to an end. Because the concentration gradients are 
already relatively small, mass flux cannot be sub- 
stantially reduced by poor solubility. The amount of 
mass yet to be transferred determines the duration of 

the process. In this range the volume change number 
is the only parameter. 

The second range can be seen in Fig. 7. There the 
curves for the mean Sherwood number deviate from 
the course of the equimolar transport case (A V*, = 0) 
for larger volume change numbers (A k’: = 1 and 10). 
where the Henry number has an influence, too. The 
larger the volume change number, the larger the Sher- 
wood number for small Henry numbers. The change 
in volume of the particle reduces the resistance to mass 
transfer; an actual increase in the mass flux densities, 
however. requires an adequate solubility for the sub- 
stance. If H* L- 100, absorption capability of the 
phases is essentially diminished so that mass transfer 
will be inhibited. Then the curves of the Sherwood 
number are independent of A V:. 

3.3. Inj%rence of the dljiisirit_v number 
3.3. I. General description. The diffusivity number 

is defined as the ratio of diffusivities ; it may be inter- 
preted as the ratio of concentration equalization 
times. Large diffusivities imply fast equalization of 
concentration differences, small diffusivities imply 
slow equalization. Therefore. for large diffusivity 
numbers, D * > 1, the equalization is faster in phase 1. 
Conversely. it is faster in phase 2 for small diffusivity 
numbers. D * < I. 

This is linked to the resistance to mass transfer. For 
large diffusivity numbers the equalization inside the 
particle is so fast that resistance to mass transfer actu- 
ally occurs only in the surrounding phase. On the 
other hand, the equalization is much faster in the 
surrounding phase for small diffusivity numbers, so 
that resistance to mass transfer occurs inside the par- 
ticle. For values close to D* z 1, the rate of con- 
centration equalization is of the same order in both 
phases, and resistance to mass transfer also occurs in 
both phases. 

The influence of the diffusivity number on mass 
transfer between the phases will be discussed below 
by means of concentration patterns as well as by the 
mean concentration and Sherwood number. The time 
is expressed in a dimensionless way in the form of the 
Fourier number Fo,,,? ; using the Fourier number Fo,, 
would have led to formally different curves with the 
same physical content. 

3.3.2. Concentration patterns. Figure 8 shows pro- 
files of the local concentrations <, inside, and il 
around the particle. The series shows absorption 
(AV: = I) into a particle with high solubility 
(H* = 1) ; the diffusivity number is varied in such a 
way that resistance to mass transfer first predomi- 
nates inside the particle, then occurs in both phases, 
and finally predominates in the surrounding phase. 

3.3.3. Sherwoodnumber. The mean Sherwood num- 
ber Shz is shown in Fig. 9 for different diffusivity 
numbers. For small times the curves follow the ana- 
lytically based limiting law with a slope of Fo,z’ 2. In 
the range of large times the curves merge for a limiting 
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cum the location of which depends only on the vof- 
ume change number. 

3.3.4. Interaction between the inpUenct?s of the d&- 
sivity number and the volume change number. If resist- 
ance to mass transfer occurs in both phases, mass 
transfer is n&d by the diffusivity number as weil as 
the volume change number. As was explained in the 
previous sections, the influence of the diffusivity num- 
ber is found in the range of small times, while the 
inffuence of the voIume change number is restricted 
to the range of garge times, Therefore, three distinct 
ranges of time are distinguished concerning the inter- 
action of the parameters. 

(I) For S&I times the infkrence of the ~~~§~~t~ 
number predominates due to only slight volume 
changes. 

(2) In the range of intermediate times, both the 
diffusivity number and the volume change number 
determine mass transfer. 

(3) For large times the inffuence of the volume 
change number predominates ; the amount of mass 
transferred determines that instant when equilibrium 
will be reached. 

3.35 ~~~er~~~o~ bettveen the iq%ences of the di@- 
sivity nmber and the Henry number. The ditksivity 
number and the Henry number jointly control mass 
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FIG. 9. Mean Sherwood number Sh2 plotted vs the Fourier number Fo,? for several diffusivity numbers D’. 

transfer if resistance to mass transfer occurs in both 
phases. Then both parameters have the largest influ- 
ence in the range of small Fourier numbers. 

Real systems generally have a large Henry number 
combined with a large diffusivity number, or both 
have small values. This results in compensation of the 
influences of these two parameters. 

3.4. Influence of the Damkiihler number 
3.4.1. General description. The volumetric Dam- 

kiihler number Da, describes the intensity of homo- 
geneous chemical reactions. According to its defi- 
nition, equation (14) it can be interpreted as the 
ratio of the rate of reaction k,R, and the rate of 
diffusion D,/R,. A large Damkiihler number implies 
a vigorous reaction, while a small value stands for a 
weak reaction. Two limiting cases occur : the limiting 
case of Da, -+ 0 is called reaction inhibition. Here the 
rate of reaction is negligibly small compared to the 
rate of diffusion; actually no reaction takes place. 
This case of pure physical mass transfer has been 
discussed in the previous sections. The second limiting 
case of Da, + 00 is called diffusion inhibition or trans- 
port inhibition. The reaction is so vigorous that the 
rate of mass transfer to the place of reaction limits the 
mass transfer. For a homogeneous reaction, i.e. a 
reaction taking place all over the volume of a phase, 
this second limiting case leads to a mass transfer 
within infinitely short times and therefore may be seen 
as an ‘inhibition’ only at the end of the process. 

An investigation of combined mass transfer and 
first-order homogeneous chemical reaction makes 
sense for the considered system of a single particle and 
continuous surroundings, only if the reaction takes 
place in the surrounding phase, and if mass transfer 
is directed from the particle into the surrounding 
phase. In this paper the influence of the Damkiihler 
number will, therefore, be discussed only for the case 
of resistance to mass transfer in the surrounding phase 

(D* 2 1) and a shrinking particle due to evaporation 
(AV: < 0). 

The substance transferred is about to be changed 
into the reaction product by chemical reaction with 
its reaction partner that is assumed to exist in surplus. 
Thus, the homogeneous reaction diminishes the con- 
centration of substance A in the surrounding phase, 
causing larger concentration gradients at the interface, 
and enhancing molecular transport across the inter- 
face. The homogeneous reaction promotes the mass 
transfer. The larger the DamkGhler number, the better 
the mass transfer is. For very large Damkiihler num- 
bers, i.e. Da, + 00, every molecule of substance A 
will be changed immediately after passing across the 
interface ; then concentration &, is zero, and the con- 
centration gradient (a&/W), is infinite. Mass trans- 
fer will be completed within an infinitely short time. 

The influence of the volumetric Damkiihler number 
on mass transfer will be discussed in the following 
section by means of selected concentration patterns 
and quantities derived therefrom. 

3.4.2. Concentration patterns. Figure 10 shows the 
influence of homogeneous chemical reaction in the 
surrounding phase on the concentrations r, inside 
and t2 outside the particle. In this series of figures 
only the Damkohler number is varied between its 
two limiting values Da, = 0 and Dq -* Q) ; all other 
parameters remain constant. Partial evaporation of 
the particle (AVZ = -0.8) at moderate solubility 
(H+ = 100) is considered. Resistance to mass transfer 
is restricted to the surrounding phase (D* + co). The 
path of the interface is marked by a dashed line; the 
final radius of R* = 0.585 is marked by a double 
circle. 

3.4.3. Sherwood number and enhancement factor. In 
Fig. 11 the mean Sherwood number Sh2 is plotted 
vs the Fourier number Fo,,,~ for different Damkiihler 
numbers. The curve for pure physical transport, i.e. 
Da, = 0, has already been discussed in previous sec- 
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FIG. IO. Local concentrations <, and & inside and around the particle plotted KS the radial coordinate r* 
for several Fourier numbers FOG : (a) pure physical transfer : Damkiihfer number E&T,. = 0 ; (b) slight 
chemical reaction: Damkiihier number Da, = 1; (c) intense chemical reaction: DamkGhlet number 
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tions and will be used as reference again. In the range 
of small and intermediate times, the curves of the 
mean Sherwood number leave the limiting curve of 
Da, = 0 and then pass to a range of constant Sher- 
wood numbers. Approaching the state of equilibrium, 
all the curves run into a common limiting curve. This 
limiting curve has a slope of Fo,&’ and depends on the 
volume change number only. 

The enhancement factor @will be used as a measure 
for the enhancement of mass transfer by chemical 
reaction. It is defined by 

IIere, #iz& is the mass transfer coefficient for pure 
physical transport. Figure 12 shows the enhancement 
factor @ plotted vs the Fourier number Fo, for 
different Damkiihler numbers. The curve for slight 
chemical reaction, Da, = 1, will be discussed first. 

The enhancement factor is Q = 1 up to a Fourier 
number of about Fom2 = 10h2 ; chemical reaction does 
not have any influence on mass transfer yet. In the 
following range of intermediate Fourier numbers, the 
enhancement factor increases to a maximum value of 
about Q, = 1.5 and then goes back to QI, = 1. Thus, 
chemical reaction influences mass transfer only in a 
distinct, limited range of time. 
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Fourier number Foaz 3 t3,& 

FIG. 11. Mean Sherwood number Sh, vs the Fourier number FD,~ for several Damkiihler numbers Da,. 

The size of this distinct range, as well as the Damktihler number and the volume change number 
maximum enhancement factor, increases with increas- jointly control mass transfer. Interaction between the 
ing Damkiihler numbers. With increasing intensity parameter occurs here. 
of chemical reaction, the influence becomes evident (3) For large times, mass transfer as well as chemi- 
earlier; the maximum enhan~ent factor shifts to cal reaction come to an end. The volume change num- 
lower Fourier numbers. AH the curves merge into one ber is predominating in this range of time. 
limiting curve the location of which depends on the 
volume change number only. 

3.5. Correlation for the Sherwood number 

3.4.4. Interaction between the in@ences of the 
The results for the mean Sherwood number dis- 

Damk8hler number and the vohtme change number. The 
cussed in the previous section are summed up in one 

Damkijhler number and the volume change number 
equation. The mass transfer coefficient may be cal- 

jointly control transport processes if large amounts of 
culated for arbitrary values of the parameters Fo,,,~, 

mass have to be transferred with a simultaneous 
AV$, H*, D* and Da, by means of this correlation 

chemical reaction. The parameters interact concem- 4/&r 
ing their intluence on mass transfer. There are three 

Sh2 = 
i[i 

H*+(D,/Dz)-r 2 FoGi” 
) 

distinct ranges of time. 

(1) For smah times the concentration gradients at 
the interface are so large that neither the Damkbhler 
number nor the volume change number can influence 
mass transfer. 

+~2+2.$CZili.’ 

- 112 

+[(0.4-+-AJ’~3~‘)4’qFo~~]-2 (24) 

(2) In the range of intermediate times, the where 

N 

? 
N 61 I I I I I 1 AV: = -0.8 

I “I _ <no 

-2 6 /I / 

a 4 f 
/I/ 

/ I/ 

lcP xl”’ lo-2 l@ ld lo’ 

Four rer number Fo,a = tt& ,R$ 

FIG. t2. Enhancement factor @ plotted vs the Fourier number Fo,, for several Damkijhler numbers Da,. 
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E = 1 + 1.5 arctan ,/(Da,). (25) 

The mass transfer coefficient may be obtained by 
rearranging the defining equation for the Sherwood 
number 

82 = Shr D,l(2&) 

the mass flux density is then given by 

(26) 

&! = B*(P**oI~*-PA*m). (27) 

The range of application of equation (24) has been 
tested for the following values of the parameters : 

0 d Fo,,,~ Q co 

0 < AVj, < lo6 

100 ,< H* < 10’ 

0.01 < D* < 10” 

0 < Da, d 10’. (28) 

The design of equation (24) has been chosen in such a 
way that analytically based limiting laws are included, 
and therefore, the application of the equation is not 
restricted to the range of results checked. 

4. CONCLUSION 

Unsteady-state mass transfer across the interface 
of fluid particles has been investigated by means of 
theoretical-numerical methods. The influence of a 
volume change due to mass transfer has been taken 
into account. For the description of the transport 
processes the following parameters are used : volume 
change number AVZ, Henry number H*, diffusivity 
number D*, and Damkijhler number Da,. 

The volume change number A V5, is defined as the 
ratio of the maximum volume change of the particle 
to its initial volume. The motion of the interface in 
the radial direction enhances mass transfer during 
absorption and diminishes it during evaporation. The 
end of the mass transfer process is determined by the 
amount of transferable mass in the particle. The larger 

the volume change number, the later the state of equi- 
librium is reached. 

The Henry number H* is a measure of the soiubility 
of the transferred substance in the system considered. 
The smaller the Henry number, the more intense the 
mass transfer. 

The diffusivity number D* is defined by the ratio 
of diffusivities and is a measure of the distribution of 
the resistance to mass transfer in the two phases. For 
an intense mass transfer, a fast equalization of con- 
centration differences inside the particle is necessary. 
Therefore, the larger the diffusivity number, the more 
intense the mass transfer. 

The Damkohler number Da, characterizes the 
intensity of a homogeneous chemical reaction. The 
transferred substance will be changed into the reaction 
product by a chemical reaction in the bulk of the 
surrounding phase ; thus the concentration gradients 
at the interface become larger. The larger the Dam- 
kiihler number, the more intense the mass transfer. 

The results are summed up by a correlation for 
the mean Sherwood number. This equation makes it 
possible to calculate the mass transfer coefficient for 
arbitrary values of the parameters Fom2, AVZ, H*, 
D*, and Da,. 
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TRANSFERT VARIABLE DE MASSE PAR DES PARTICULES FLUIDES A VOLUME 
VARIABLE 

R&m&-Les configurations de concentration d&pendant du temps sont calculees ainsi que les nombres de 
Sherwood pour des mecanismes diphasiques a gouttes et bulles. On rapporte des risultats pour des 
particules qui se resorbent ou qui croissent, et pour des particules h volume constant. On prend en 
consideration les influences de la solubilite, de la resistance au transfert de masse et dune reaction homogene 

du premier ordre. 

INSTATIONARER STOFFTRANSPORT DURCH FLUIDE PARTIKEL 
VEtiNDERLICHER GRt)SSE 

Zusammenfassung-Es werden sowohl zeitabhlngige Konzentrationsmodelle als such Sherwood-Zahlen 
Rlr Zweiphasenstriimungsvorgiinge mit Blasen und Tropfen berechnet. Ergebnisse werden fiir schrumpf- 
ende und wachsende Partikel und fir Partikel gleichbleibender GrciI3e vorgestellt. Einfliisse der LBslich- 
keit, des Stofftransportwiderstandes und homogener Reaktionen erster Ordnung werden berilcksichtigt. 



HECTALI(MOHAPHblti MACCOffEPEHOC YAC’lTi~MM XHAKOCFM IIEPEMEHHOI-0 
06bEMA 

Amo7um-QoBeneii pacqm npocrpanmm*epehie~Hux cqqmyp, a Tame 3iiapeHxl wicna 
~CpBj’llR JUIS EB)‘x#MbU qpOWCCOB C Of&WOBRfIHCM ily3bl~bROB H ftWiCJTb. PC3yllbTRTbi ~OnyneHbl 

Kax nJM 4i.JQ’¶ReB ~~~~ Is ~~~~~~ B OtheMC qaccHII. Tax H Jmn qamu rmcTomi- 
Eoro otkm. Ymfraraaercfi ponb pammpithsocq compomnufetiiix hiaccompemcy of xmmfecxoB 

peaxwin uepnoro nopmm, npomcarouieil B o6aeMe. 


